Modeling and Optimization of Surface Grinding Process Parameters Using Non-dominated Sorting Genetic Algorithm (NSGA)

نویسندگان

  • Abdul Kalam
  • M. Janardhan
  • A. Gopala Krishna
چکیده

Surface grinding is the most common process used in the manufacturing sector to produce smooth finish on flat surfaces. Surface quality and metal removal rate are the two important performance characteristics to be considered in the grinding process. The economics of the machining process is affected by several factors such as abrasive wheel grade, wheel speed, depth of cut, table speed and material properties. In this work, empirical models are developed for surface roughness and metal removal rate by considering wheel speed, table speed and depth of cut as control factors using response surface methodology. The mathematical models developed were checked for their adequacy using the analysis of variance and these models were used for the optimization. Since the influences of machining parameters on the metal removal rate and surface roughness are opposite in nature, the problem is formulated as multi objective optimisation problem. An efficient evolutionary optimisation algorithm, Nondominated sorting genetic algorithm (NSGA) is then applied for optimisation and to obtain the Pareto optimal set of solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Placement of Phasor Measurement Units to Maintain CompleteObservability Considering Maximum Reliability by Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

Ever-increasing energy demand has led to geographic expansion of transmission lines and their complexity. In addition, higher reliability is expected in the transmission systemsdue to their vital role in power systems. It is very difficult to realize this goal by conventional monitoring and control methods. Thus, phasor measurement units (PMUs) are used to measure system parameters. Although in...

متن کامل

Experimental Investigation and Optimizing Geometrical Characteristics and Surface Quality in Drilling of AISI H13 Steel

The aim of this paper is to investigate and optimize surface quality and geometrical characteristics in drilling process of AISI H13 steel, because they are critical items for precision manufacturing. After conducting the experiments, two regression models are developed to extensively evaluate the effect of drilling parameters on process outputs. After that, evolutionary multi-objective optimiz...

متن کامل

Optimal Distribution System Reconfiguration Using Non-dominated Sorting Genetic Algorithm (NSGA-II)

In this paper, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based approach is presented for distribution system reconfiguration. In contrast to the conventional GA based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. In order to illustrate the performance of the proposed method,...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012